Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
IEEE Control Systems Letters ; 7:583-588, 2023.
Article in English | Scopus | ID: covidwho-2243447

ABSTRACT

Until the approval of vaccines at the end of 2020, societies relied on non-pharmaceutical interventions (NPIs) in order to control the COVID-19 pandemic. Spontaneous changes in individual behavior might have contributed to or counteracted epidemic control due to NPIs. For example, the population compliance to NPIs may have varied over time as people developed 'epidemic fatigue' or altered their perception of the risk and severity of COVID-19. Whereas official measures are well documented, the behavioral response of the citizens is harder to capture. We propose a mathematical model of the societal response, taking into account three main effects: the citizen response dynamics, the authorities' NPIs, and the occurrence of unpreventable events that significantly alter the virus transmission rate. A key assumption is that a society has a waning memory of the epidemic effects, which reflects on both the severity of the authorities' NPIs and on the citizens' compliance to the prescribed rules. This, in turn, feeds back onto the transmission rate of the disease, such that a higher number of hospitalizations decreases the probability of transmission. We show that the model is able to reproduce the COVID-19 dynamics in terms of hospital admissions for several European countries during 2020 over surprisingly long time scales. Also, it is capable of capturing the effects of disturbances (for example the emergence of new virus variants) and can be exploited for implementing control actions to limit such effects. A possible application, illustrated in this letter, consists of exploiting the estimations based on the data of one country, to predict and control the evolution in another country, where the virus spreading is still in an earlier phase. © 2017 IEEE.

2.
3rd IEEE International Conference on System Analysis and Intelligent Computing, SAIC 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2136477

ABSTRACT

This paper is a comprehensive study dedicated to practical solution of estimation problems in models of the spread of infectious diseases. Mentioned algorithms of parameters' estimation make possible to build mathematical models of the spread of infectious diseases based on observations. The results of analysis of the approach to mathematical modeling of the spread of infectious diseases are given in this paper, in particular simulation models and estimation methods in models of population dynamics. Computer simulation for analysis of COVID-19 pandemic in Czech Republic demonstrates efficiency o f t he mentioned algorithm. © 2022 IEEE.

3.
IEEE Control Systems Letters ; : 1-1, 2022.
Article in English | Scopus | ID: covidwho-2052058

ABSTRACT

Until the approval of vaccines at the end of 2020, societies relied on non-pharmaceutical interventions (NPIs) in order to control the COVID-19 pandemic. Spontaneous changes in individual behavior might have contributed to or counteracted epidemic control due to NPIs. For example, the population compliance to NPIs may have varied over time as people developed “epidemic fatigue" or altered their perception of the risk and severity of COVID-19. Whereas official measures are well documented, the behavioral response of the citizens is harder to capture. We propose a mathematical model of the societal response, taking into account three main effects: the citizen response dynamics, the authorities’NPIs, and the occurrence of unpreventable events that significantly alter the virus transmission rate. A key assumption is that a society has a waning memory of the epidemic effects, which reflects on both the severity of the authorities’NPIs and on the citizens’compliance to the prescribed rules. This, in turn, feeds back onto the transmission rate of the disease, such that a higher number of hospitalizations decreases the probability of transmission. We show that the model is able to reproduce the COVID-19 dynamics in terms of hospital admissions for several European countries during 2020 over surprisingly long time scales. Also, it is capable of capturing the effects of disturbances (for example the emergence of new virus variants) and can be exploited for implementing control actions to limit such effects. A possible application, illustrated in the paper, consists of exploiting the estimations based on the data of one country, to predict and control the evolution in another country, where the virus spreading is still in an earlier phase. IEEE

4.
J Transl Med ; 20(1): 170, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1785158

ABSTRACT

BACKGROUND: Although numerous studies have explored the impact of meteorological factors on the epidemic of COVID-19, their relationship remains controversial and needs to be clarified. METHODS: We assessed the risk effect of various meteorological factors on COVID-19 infection using the distributed lag nonlinear model, based on related data from July 1, 2020, to June 30, 2021, in eight countries, including Portugal, Greece, Egypt, South Africa, Paraguay, Uruguay, South Korea, and Japan, which are in Europe, Africa, South America, and Asia, respectively. We also explored associations between COVID-19 prevalence and individual meteorological factors by the Spearman's rank correlation test. RESULTS: There were significant non-linear relationships between both temperature and relative humidity and COVID-19 prevalence. In the countries located in the Northern Hemisphere with similar latitudes, the risk of COVID-19 infection was the highest at temperature below 5 â„ƒ. In the countries located in the Southern Hemisphere with similar latitudes, their highest infection risk occurred at around 15 â„ƒ. Nevertheless, in most countries, high temperature showed no significant association with reduced risk of COVID-19 infection. The effect pattern of relative humidity on COVID-19 depended on the range of its variation in countries. Overall, low relative humidity was correlated with increased risk of COVID-19 infection, while the high risk of infection at extremely high relative humidity could occur in some countries. In addition, relative humidity had a longer lag effect on COVID-19 than temperature. CONCLUSIONS: The effects of meteorological factors on COVID-19 prevalence are nonlinear and hysteretic. Although low temperature and relative humidity may lower the risk of COVID-19, high temperature or relative humidity could also be associated with a high prevalence of COVID-19 in some regions.


Subject(s)
COVID-19 , COVID-19/epidemiology , China/epidemiology , Humans , Meteorological Concepts , Nonlinear Dynamics , Prevalence , South Africa , Temperature
5.
BMC Musculoskelet Disord ; 22(1): 641, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1346231

ABSTRACT

BACKGROUND: Patients with ankylosing spondylitis (AS) have reported that their pain becomes worse when the local weather changes. However, there is limited evidence verifying the short-term associations between meteorological factors and outpatient visits for patients with AS. Therefore, this study evaluates this possible association. METHODS: Meteorological data and data on daily AS outpatient visits to a general hospital in Hefei, China, from 2014 to 2019 were collected and analysed. Distributed lag nonlinear models and Poisson regression models were employed to determine the association between weather conditions and outpatient visits; the results were also stratified by gender and age. RESULTS: High relative humidity is significantly associated with all patient visits in lag 1 (RR = 1.113, 95% CI 1.021 to 1.213) and lag 7 days (RR = 1.115, 95% CI 1.014 to 1.227). A low relative risk to the nadir is observed in lag 4 days (RR = 0.920, 95% CI 0.862 to 0.983). Male and young patients (< 65 years) are more vulnerable to damp weather, and elderly people (≥ 65 years) are significantly affected by high temperatures in lag 7 days (RR = 3.004, 95% CI 1.201 to 7.510). CONCLUSIONS: Our findings suggest a potential relationship between exposure to weather conditions and increased risk of AS outpatient visits. These results can aid hospitals in preparing for and managing hospital visits by AS patients when the local weather conditions change.


Subject(s)
Spondylitis, Ankylosing , Aged , China/epidemiology , Hot Temperature , Humans , Male , Risk , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/epidemiology , Temperature , Weather
6.
ISA Trans ; 124: 197-214, 2022 May.
Article in English | MEDLINE | ID: covidwho-968308

ABSTRACT

The SARS-CoV-2 virus was first registered in Brazil by the end of February 2020. Since then, the country counts over 150000 deaths due to COVID-19 and faces a profound social and economic crisis; there is also an ongoing health catastrophe, with the majority of hospital beds in many Brazilian cities currently occupied with COVID-19 patients. Thus, a Nonlinear Model Predictive Control (NMPC) scheme used to plan appropriate social distancing measures (and relaxations) in order to mitigate the effects of this pandemic is formulated in this paper. The strategy is designed upon an adapted data-driven Susceptible-Infected-Recovered-Deceased (SIRD) model, which includes time-varying auto-regressive immunological parameters. A novel identification procedure is proposed, composed of analytical regressions, Least-Squares optimization and auto-regressive model fits. The adapted SIRD model is validated with real data and able to adequately represent the contagion curves over large forecast horizons. The NMPC strategy is designed to generate piecewise constant quarantine guidelines, which can be reassessed (relaxed/strengthened) each week. Simulation results show that the proposed NMPC technique is able to mitigate the number of infections and progressively loosen social distancing measures. With respect to a "no-control" condition, the number of deaths could be reduced in up to 30% if the proposed NMPC coordinated health policy measures are enacted.


Subject(s)
COVID-19 , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Physical Distancing , SARS-CoV-2
7.
Environ Sci Pollut Res Int ; 28(6): 6587-6599, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-812539

ABSTRACT

The COVID-19 outbreak has become a global pandemic. The spatial variation in the environmental, health, socioeconomic, and demographic risk factors of COVID-19 death rate is not well understood. Global models and local linear models were used to estimate the impact of risk factors of the COVID-19, but these do not account for the nonlinear relationships between the risk factors and the COVID-19 death rate at various geographical locations. We proposed a local nonlinear nonparametric regression model named geographically weighted random forest (GW-RF) to estimate the nonlinear relationship between COVID-19 death rate and 47 risk factors derived from the US Environmental Protection Agency, National Center for Environmental Information, Centers for Disease Control and the US census. The COVID-19 data were employed to a global regression model random forest (RF) and a local model GW-RF. The adjusted R2 of the RF is 0.69. The adjusted R2 of the proposed GW-RF is 0.78. The result of GW-RF showed that the risk factors (i.e. going to work by walking, airborne benzene concentration, householder with a mortgage, unemployment, airborne PM2.5 concentration and per cent of the black or African American) have a high correlation with the spatial distribution of the COVID-19 death rate, and these key factors driven from the GW-RF were mapped, which could provide useful implications for controlling the spread of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Adolescent , Adult , Child, Preschool , Humans , Male , Risk Factors , SARS-CoV-2 , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL